Roadmap Development: Combining prior architectural, use case, and technology analysis prior work assembled a technology roadmap development plan, with metrics, as input the CICT next generation research plan. The roadmap and metrics are summarized below and discussed in-depth with CICT program managers. The expected impact of development of these capabilities include substantial societal benefit;

- Environmental knowledge, events and predictions should be as available to the general public as textual and pictorial data are available today on the web.
- ➤ For deep space missions can use underlying Knowledge-Building Systems to be able to be goal-oriented, learn about environment and reconfigure, possibly adjusting goals.
- > System level reconfigurability based on knowledge-building

Near Future Metric

Near Future Capability

Faster access to and utilization of NASA's data in near real-time operational applications

2015 Metric

			2015 Capability			
	L					
KNOWLEDGE BUILDING SYSTEMS						
Performance model of global persistence architecture	35 archives (NASA & non-NASA); ~2.5 PB	~200 archives (NASA & non-NASA); ~ 500 PB	Global persistence			
Implement a economic data services model similar to Ebay	~80 loosely federated nodes (NASA & non-NASA) with predetermined associations; limited to fixed, scheduled linkages	~500 cooperating nodes (NASA & non-NASA); on-demand service chaining up to 5 links	Robust collaborative economic model			
Scalable mining algorithms, plus distributed techniques/languages	One archive, single discipline	Mine cross-discipline 40-year datasets from ~6 archives within 6 months to build knowledgebase relevant to specific applications	Mining long-term holdings for trends analysis			
APPLICATIONS OF SCIENCE DIRECTLY USABLE						
Automated quality assessment	Science QA takes several months; operational QA in minutes (in-line with product generation)	Perform equivalent of science QA within a few minutes	Autonomous quality assessment			
Adaptive resources optimization	CPU load balancing within a cluster	Balancing all resource types across a service chain	Intelligent resource optimization			

Autonomic computing; self-healing hardware	Specially designed products available within 1 to 2 hours of acquisition Lights out operation of mission critical archives	All relevant level 2 products and spatially registered level 3 products for a given application available within 15 minutes of acquisition Lights out operations	Self managing and learning robust systems			
INTELLIGENT CYBER-INFRASTRUCTURE (SCIENCE-ENABLING COMMUNICATIONS AND SOFTWARE INFRASTRUCTURE)						
Bench mark datasets for Earth science Near archive data mining	Experimental ad hoc application of intelligent algorithms, downstream of production timeline; One algorithm single mission per product; production timelines in months Limited content-based metadata (e.g., cloud mask products, QA flags); Special purpose content experimentally derived, ad hoc	Distributed on-demand generation using adaptive algorithms; Concurrent processing in 120 service-chains (12 national applications, 10 end-points per application); Production timelines in minutes for selected service chains In-line mining with distributed production; Content information mined for entire datasets (e.g., features, phenomena, events, precursor statistical signatures); Distributed service chains with embedded intelligent algorithm support; 100,000 end users and operations processes	NASA and ops agency supported by intelligent cyber-infrastructure			
operations processes. STRONGLY INTEROPERABLE FABRIC						
Standard data/science access mechanisms and semantic web Search protocol gateway	Several common data standards, tools, software packages; extensions of XML to specific disciplines; experimental work in semantic web Portals (e.g., EDG) provide structured pre-computed metadata access to 21 earth science archives selected inventory (9 US and international)	Full ontologies for data and services in 200 archives Automated registration of new data and service types and automated linkage to end-user interest	Automated data discovery and utilization			

Feedback Loop					
	Initial efforts at alerting (e.g., solar events, fires, cyclones)	Unsupervised algorithm, multi-anomaly detection capability embedded in at least one mission (onboard acquisition stage) for rapid operational awareness/response Autonomous IDU algorithms embedded in all mission data production process Autonomous IDU algorithms scan 24/7 all long-term archives for discovery alerts	Self-analyzing and autonomous anomaly response		
Secure OS [not covered]	Testbed on-board space TCP/IP connection	Automatic filtering and risk assessment of any commands issued; Secure space-based internet access	Zero-risk command & control of space assets		
	No near-real-time linking	Resource availability and request queues brokered 24/7; 15 minutes' response time between request for resource by a model and response to model (e.g., request could be mining, drawing from a cache or sensor acquisition)	Linking between modeling and adaptive scheduling		